Python API
Operations
docetl.schemas.MapOp = map.MapOperation.schema
module-attribute
docetl.schemas.ResolveOp = resolve.ResolveOperation.schema
module-attribute
docetl.schemas.ReduceOp = reduce.ReduceOperation.schema
module-attribute
docetl.schemas.ParallelMapOp = map.ParallelMapOperation.schema
module-attribute
docetl.schemas.FilterOp = filter.FilterOperation.schema
module-attribute
docetl.schemas.EquijoinOp = equijoin.EquijoinOperation.schema
module-attribute
docetl.schemas.SplitOp = split.SplitOperation.schema
module-attribute
docetl.schemas.GatherOp = gather.GatherOperation.schema
module-attribute
docetl.schemas.UnnestOp = unnest.UnnestOperation.schema
module-attribute
docetl.schemas.SampleOp = sample.SampleOperation.schema
module-attribute
docetl.schemas.ClusterOp = cluster.ClusterOperation.schema
module-attribute
Dataset and Pipeline
docetl.schemas.Dataset = dataset.Dataset.schema
module-attribute
docetl.schemas.ParsingTool
Bases: BaseModel
Represents a parsing tool used for custom data parsing in the pipeline.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the parsing tool. This should be unique within the pipeline configuration. |
function_code |
str
|
The Python code defining the parsing function. This code will be executed to parse the input data according to the specified logic. It should return a list of strings, where each string is its own document. |
Example
parsing_tools:
- name: ocr_parser
function_code: |
import pytesseract
from pdf2image import convert_from_path
def ocr_parser(filename: str) -> List[str]:
images = convert_from_path(filename)
text = ""
for image in images:
text += pytesseract.image_to_string(image)
return [text]
Source code in docetl/base_schemas.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
docetl.schemas.PipelineStep
Bases: BaseModel
Represents a step in the pipeline.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the step. |
operations |
List[Union[Dict[str, Any], str]]
|
A list of operations to be applied in this step. Each operation can be either a string (the name of the operation) or a dictionary (for more complex configurations). |
input |
Optional[str]
|
The input for this step. It can be either the name of a dataset or the name of a previous step. If not provided, the step will use the output of the previous step as its input. |
Example
# Simple step with a single operation
process_step = PipelineStep(
name="process_step",
input="my_dataset",
operations=["process"]
)
# Step with multiple operations
summarize_step = PipelineStep(
name="summarize_step",
input="process_step",
operations=["summarize"]
)
# Step with a more complex operation configuration
custom_step = PipelineStep(
name="custom_step",
input="previous_step",
operations=[
{
"custom_operation": {
"model": "gpt-4",
"prompt": "Perform a custom analysis on the following text:"
}
}
]
)
These examples show different ways to configure pipeline steps, from simple single-operation steps to more complex configurations with custom parameters.
Source code in docetl/base_schemas.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
|
docetl.schemas.PipelineOutput
Bases: BaseModel
Represents the output configuration for a pipeline.
Attributes:
Name | Type | Description |
---|---|---|
type |
str
|
The type of output. This could be 'file', 'database', etc. |
path |
str
|
The path where the output will be stored. This could be a file path, database connection string, etc., depending on the type. |
intermediate_dir |
Optional[str]
|
The directory to store intermediate results, if applicable. Defaults to None. |
Example
output = PipelineOutput(
type="file",
path="/path/to/output.json",
intermediate_dir="/path/to/intermediate/results"
)
Source code in docetl/base_schemas.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
docetl.api.Pipeline
Represents a complete document processing pipeline.
Attributes:
Name | Type | Description |
---|---|---|
name |
str
|
The name of the pipeline. |
datasets |
Dict[str, Dataset]
|
A dictionary of datasets used in the pipeline, where keys are dataset names and values are Dataset objects. |
operations |
List[OpType]
|
A list of operations to be performed in the pipeline. |
steps |
List[PipelineStep]
|
A list of steps that make up the pipeline. |
output |
PipelineOutput
|
The output configuration for the pipeline. |
parsing_tools |
List[ParsingTool]
|
A list of parsing tools used in the pipeline. Defaults to an empty list. |
default_model |
Optional[str]
|
The default language model to use for operations that require one. Defaults to None. |
Example
def custom_parser(text: str) -> List[str]:
# this will convert the text in the column to uppercase
# You should return a list of strings, where each string is a separate document
return [text.upper()]
pipeline = Pipeline(
name="document_processing_pipeline",
datasets={
"input_data": Dataset(type="file", path="/path/to/input.json", parsing=[{"name": "custom_parser", "input_key": "content", "output_key": "uppercase_content"}]),
},
parsing_tools=[custom_parser],
operations=[
MapOp(
name="process",
type="map",
prompt="Determine what type of document this is: {{ input.uppercase_content }}",
output={"schema": {"document_type": "string"}}
),
ReduceOp(
name="summarize",
type="reduce",
reduce_key="document_type",
prompt="Summarize the processed contents: {% for item in inputs %}{{ item.uppercase_content }} {% endfor %}",
output={"schema": {"summary": "string"}}
)
],
steps=[
PipelineStep(name="process_step", input="input_data", operations=["process"]),
PipelineStep(name="summarize_step", input="process_step", operations=["summarize"])
],
output=PipelineOutput(type="file", path="/path/to/output.json"),
default_model="gpt-4o-mini"
)
This example shows a complete pipeline configuration with datasets, operations, steps, and output settings.
Source code in docetl/api.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|
optimize(max_threads=None, model='gpt-4o', resume=False, timeout=60)
Optimize the pipeline using the Optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_threads
|
Optional[int]
|
Maximum number of threads to use for optimization. |
None
|
model
|
str
|
The model to use for optimization. Defaults to "gpt-4o". |
'gpt-4o'
|
resume
|
bool
|
Whether to resume optimization from a previous state. Defaults to False. |
False
|
timeout
|
int
|
Timeout for optimization in seconds. Defaults to 60. |
60
|
Returns:
Name | Type | Description |
---|---|---|
Pipeline |
Pipeline
|
An optimized version of the pipeline. |
Source code in docetl/api.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
run(max_threads=None)
Run the pipeline using the DSLRunner.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_threads
|
Optional[int]
|
Maximum number of threads to use for execution. |
None
|
Returns:
Name | Type | Description |
---|---|---|
float |
float
|
The total cost of running the pipeline. |
Source code in docetl/api.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
to_yaml(path)
Convert the Pipeline object to a YAML string and save it to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path
|
str
|
Path to save the YAML file. |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in docetl/api.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|